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Abstract 
X-ray standing waves (SW) formed by dynamical 
diffraction are discussed analytically in the case of 
distorted crystals, in which the lattice has a monotonous 
elongation (or contraction) normal to the crystal surface. 
Both the external and the intemal SWs are dealt with. 
Also, for the purpose of applications to standing-wave 
methods, the fluorescence yields of adsorbed atoms and 
impurities in the host crystal are formulated as a function 
of the off-Bragg angle of the incident beam. Through 
some numerical examples for special distortions, it is 
demonstrated that the conventional analysis based on the 
assumption of a perfect crystal may give serious errors 
(10-20%) on the location of foreign atoms, even when 
the deformation is so small that it is hardly detected by 
the rocking curve of the Bragg reflection. 

1. InWoducfion 
The X-ray standing waves (SW) formed by dynamical 
wave fields in perfect crystals was first studied by 
Batterman (1961, 1964). Later, it was demonstrated that 
the SW (henceforth called the internal SW) could be 
employed to determine the location of impurities in the 
crystal lattice (Batterman, 1969; Golovchenko et al., 
1974). The principle is to measure a rocking curve of the 
fluorescence (RCF) scattered from impurities due to the 
internal SW and to find a suitable model for the impurity 
location which fits the RCE 

Anderson, Golovchenko & Mair (1976) showed that 
the external SW could also be used to study adsorbed 
atoms on a crystal surface. The method is now one of the 
most common tools for surface crystallography. 

However, in almost all works (cf Hertel et al., 1985; 
the reviews of Patel, 1996, and of Lagomarsino, 1996), 
the host crystals are assumed to be perfect and therefore 
Laue's dynamical theory of diffraction (cf Zachariasen, 
1945) is used as the theoretical basis. Remembering that 
dynamical waves are very sensitive to any lattice 
distortion (cf Kato, 1974), the present situation is not 
satisfactory, at least in applying SW methods to precise 
structural research. The SW in distorted crystals is 

:seriously discussed, probably for the first time, by 
Authier et al. (1989), which is a computer experiment 
on this subject. They used the algorithm ofBensoussan et 

al. (1987) to calculate the dynamical waves in distorted 
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crystals. They, however, are concerned with the internal 
SW and the cases when the rocking curves of the Bragg. 
reflection are significantly different from those of perfect 
crystals. 

In the present paper, it is intended to elucidate how the 
SW is affected by continuous lattice distortions through 
an analytical approach. For quantitative analysis, we shall 
take up a class of lattice distortions for which the exact 
solutions of the wave fields are available (Kato, 1990, 
1992b; henceforth referred to as P1 and P2, respectively). 
In this sense, the present paper constitutes a series with 
P1 and P2. 

In the next section, some theoretical results for perfect 
crystals are summarized. In §3, the case of distorted 
crystals is discussed. Both the internal and external SWs 
are dealt with. Finally, the exact expressions for RCFs are 
obtained under a few limited conditions. In §4, some 
numerical examples are presented to demonstrate how 
RCFs are different from those of the perfect crystal even 
when the distortion is very weak. The final chapter is 
devoted to some conclusive remarks on SW methods. 

2. Perfect crystals 
2.1. Standing waves and the Bragg-reflected intensity 

In the conventional theory, it is assumed that the 
crystal is ideally perfect and a plane wave impinges on a 
practically infinite surface. Then, in the two-beam case, 
the wave fields have the following forms. 

External wave: 

E(r) -- E o exp[i(K ° • r)] + E, exp[i(Kg • r)]. 

Internal wave: 

(la) 

d(r) = d o exp[i(k o • r)] +dg  exp[i(kg, r)], 

with the constraint 

(lb) 

kg = k o + 2zr~, (2) 

where ~ is the reflection vector, which is assumed 
outwardly normal (x direction) to the crystal surface. 
Here, E and d represent the amplitude of the relevant 
waves, and K and k are their wave vectors. The suffices o 
and g denote the incident (transmitted) and the Bragg- 
reflected waves, respectively. For simplicity, henceforth, 
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204 X-RAY STANDING WAVES IN DISTORTED CRYSTALS 

we shall consider separately the o" and zr components of 
the wave field so that they can be treated as scalar fields. 

Owing to the boundary conditions on the crystal 
surface, it follows that 

d o = E o exp i%,  (3a) 

dg = eg exp i~og, (3b) 

where 

90 = [(Ko - ko)" re], (4a) 

qgg = [(K e - kg).  re]. (46) 

Here re is an arbitrary position vector on the crystal 
surface and the celebrated tangential continuity of the 
wave vectors is satisfied. The wave vectors ko and k e are 
generally complex [see (12) and (13)], but the imaginary 
parts of ~Oo and q)g are identical. From (4), one obtains 

% - 9g = 2rr{(~. re) - -  ( G .  re)}, (4c) 

where 

2n'G = Kg - K o. (5) 

If we write the amplitude ratio of the internal wave as 

C -- (de~do) = ICI exp(i~b), (6a) 

it turns out from (3a) and (36) that the amplitude ratio of 
the extemal wave is given by 

Ee/Eo = ICI exp[i(% - 9g + 4))]. (6b) 

Consequently, ( la)  gives the expressions for the external 
SW in the form 

Iox(r) - I g / E o l  2 

= 1 + ICI 2 + 21CI cos{2zr[G • (r "--- re) ] 

+ 2~(~-re)  + ~b}. (7a) 

Similarly, for the internal SW, (lb) gives 

/, .(r) - Id/Eo] 2 

= {1 + ICI 2 + 21CI cos[2zr(~ • r) + 4]} 

× exp[2Ak".  (r -- re)], (76) 

where Ak" is the imaginary part of Ak, which will be 
explained later [cf  (13)]. One can easily see that Im is 
identical to Iex on the crystal surface as it should be. In 
general, the spacing of the external SW is slightly 
different from that of / in ,  which is always the lattice 
spacing d in the case of  perfect crystals. 

From (6b), the Bragg-reflected intensity (reflectivity) is 
given by 

R = IEe/Eol 2 - I C l  z. (8) 

In many papers, I CI in (7a) and (76) is replaced by the 

square root of the reflectivity, R x/z. The  expressions are 
useful because R is a directly measurable quantity. 

2.2. The wave  vectors 

In the following two sections, a glossary of symbols 
and some useful results of the dynamical theory are 
summarized. 

The vacuum wave vectors are written in the form 

K o = I~ o - AK o, (9a) 

Kg = I ~ -  AK e, (96) 

where I~ o and I(g are the wave vectors  satisfying the 
exact Bragg condition, namely Kg = K o + 2zr~. The 
deviation vectors are given by 

A K  o = (T,  T / c ) ,  (10a) 

A K g = ( T , - T / c ) ,  (10b) 

where c denotes tan 0B and the tangential component T is 
given by 

T = K s i n O s A O ,  A O = O - - O  B. ( l l a ,  b) 

(Here, the symbol T is used instead of  E in P1 and P2.) 
Similarly to (9), the crystal wave vectors are written in 

the form 

ko = Ko - Ak,  (12a) 

kg = Ak, (126) 

which are consistent with the constraint (2). The 
dynamical theory gives the result 

Ak  = [T, +(e :  - M2)1121c], (13) 

where 

e = T - ( 1 /2 )v  c + (i/2)/zc, (14) 

M = (1/2)KP(xeX_g)I/2/cos0 B " -  [MI exp(i~/2) .  

(15) 

The physical meaning of the double sign in (13) will be 
explained later. In (15), P is the polarization factor of 
X-rays and {Xg} are the Fourier coefficients of the 
complex polarizability (X = )( + ix")  of the crystal. In 
addition, 

rc = K ( - X ' ) / c o s 0 s  (> 0), (16a) 

tx~ = K ( f f ) / c o s O  s (> 0), (16b) - 

= arg[Xg X-g], (17) 

where /z  c cos 0~ is the linear absorption coefficient and 
a rg[ . . .  ] implies the phase of [ . . .  ]. 
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2.3. The amplitude ratio 

According to the dynamical theory, 

C = (Xg/X_g)I /2M-I{-6  + (E 2 - M2)1/2}.  (18) 

As a consequence, the phase angle q~ in (6a) and (6b) is 
given by 

4~ = (1/2)(~/,g - ~ )  + ~b o, (19) 

where 

• g = arg[xg/X_g], (20a) 

q~o = a rg[ -e  + (e 2 - M2)1 /2] .  (20b) 

Notice that ~bo depends on the deviation angle A0 and the 
phases • and ~g are intrinsic to the crystal concemed. 

Incidentally, the deviation parameter r /used in many 
articles (e.g. Batterman, 1964; Patel, 1996) is ( - e / M )  in 
the present notations. Also, the f a c t o r  (Xg/X_g) 1/2 in ( 1 8 )  

is often omitted. It is, however, important in polar 
crystals. 

In non-absorbing crystals, e and M are real, so that ¢o 
changes from 0 to zr as the e value increases from - IMI  
to IMI. In absorbing crystals, the analytical expressions 
for ¢o in terms of real quantities are rather complicated. 
However, the numerical evaluation is not made more 
difficult by using the complex expression (20b) as it is 
(see Kato, 1992a). 

Here we shall comment on the double sign of (13). 
According to mathematical convention, the imaginary 
part of  (6 2 -  M 2 )  1/2 is fixed to be positive. Physically, 
however, (Ak)x can take both signs as indicated there. 
Nevertheless, in considering sufficiently thick crystals 
(i.e. the Darwin-Prins case), only the damping solution 
along the - x  direction is permissible so that only the + 
sign must be retained both in (13) and in (18). In very 
thin crystals, Ewald's solution must be used. In this case, 
the wave field is composed of two waves specified by + 
and - signs, so that the SWs are not simple as in (7a) 
and (7b). We shall not discuss such a special case in this 
paper. 

From the expressions (7a) and (7b), one can calculate 
RCFs. However, to avoid duplication, we shall postpone 
the subject until §3.5 in which the distorted crystal is 
discussed. The RCF for perfect crystals can be given as a 
special case. 

3. Distorted crystals 

3.1. A few remarks on the lattice distortion 

In distorted crystals, the (local) reflection vector g is no 
longer constant and has the form (cf  Kato, 1974) 

g -- 2 - grad[2 • u(r)], J (21) 

where 2 is the reflection vector of  a perfect crystal and u 
is the displacement vector of  the lattice point when the 

- .  

crystal is deformed. Henceforth, 

~0 = 27r(2. u) (22) 

is called the lattice phase. 
As mentioned in the Introduction, we shall take up a 

class of lattice distortions, namely an elongation (or 
contraction) normal to the crystal surface, which is 
written in the form 

(--Ag)x -- gradx(~0/2rr ) = (Trc)-XOo tanh(lzx), (23) 

where Do and ot are parameters to specify the magnitude 
and steepness of the deformation, respectively. The 
model of  the distortion is schematically illustrated in 
Fig. 1. By integrating (23), one obtains 

tp = (2Do/otc) log(cosh ctx), (24) 

where the integral constant ~0(0) is assumed to be zero. 
Another remark must be made on the distorted net 

plane. It can be defined by the integral form of (21), i.e. 

f ( g .  dr) = (2" ~) - ~0(~)/2zr = m. (25) 
0 

In general, this defines a set of discrete surfaces, each 
being specified by integer m. In our model, they are a set 

• of  planes parallel to the crystal surface. In this case, g" 
c a n  be replaced by ;c/d. 

3.2. The amplitude ratio 

The external wave field can be written as ( la)  even 
when the crystal is deformed, and the amplitudes (Eo, Eg) 
are constant because E is a vacuum wave. For the internal 
field, unlike the case of perfect crystals, one cannot 
define explicitly the wave vectors k o and kg [equations 

S 

Fig. 1. Schematic illustration of the lattice distortion. X: The coordinate 
axis normal to the net plane, the origin being fixed in space. H: The 
half thickness of the deformed area [see equation (50c)]. Curve C: 
The deviation of the reflection vector (Ag)x [see equation (23)]. S: 
The crystal surface parallel to the net plane. In general, it may be 
located at any position as shown by broken lines. The position is 
specified by Xe. 
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(2), (12a) and (12b)]. For this reason, the internal wave is 
written for convenience in the form 

d(r) -- d o exp[i(l~ o • r)] + d g  exp[i(l~g, r)] (26) 

and (do, dg) are regarded as spatial functions in the 
crystal. Also, for a purely mathematical reason, we shall 
u s e  

u(t ,x)  = exp( - ig /2)do(r  ) [P1.2.3a] (27a) 

v(t ,x)  = exp(ig/2)dg(r) [P1.2.3b] (27b) 

instead of (do, dg). The equation number in square 
brackets refers to the equation in previous papers. The 
coordinate t is the tangential component of r in the plane 
of incidence, although it is often suppressed. In the 
present model of the lattice distortion, the functions (u, v) 
satisfy an ordinary differential equation of second order 
[P1.2.9], which is derived from a set of partial differential 
equations of Takagi-Taupin type. Therefore, (u, v) have 
two linearly independent solutions in general, which are 
called types (a) and (b). They attenuate along - x  and +x 
directions, respectively. For the same reason that we use 
to adopt the + sign in (18), only a set of solutions of type 
(a) is physically permissible. We shall write them as 
(Ua, Va). 

The boundary conditions on the crystal surface (x = 
Xe) Can be written explicitly [cf equations (la), (9a), (9b), 
(26), (27a) and (27b)] as 

E o exp[ - i (AK o • re) ] -- U~(Xe) eXp[i~O(Xe)/2 ], (28a) 

Eg exp[- i (AKg,  re) ] -- Va(Xe) eXp[--iqg(Xe)/2 ]. (28b) 

From these, the amplitude ratio of the external waves is 
given by 

Cex = Eg/E o -- [Va(Xe)/Ua(Xe)] exp{--i[~O(Xe) + l/)'(Xe)]}, 

(29) 

where 

= [(AK o -- AKg).  re]. (30) 

Inside the crystal, the amplitude ratio is a function ofx. 
Meanwhile, we shall write it in a similar manner to (29): 

Cm = dg/d o = [Va(X)/Ua(x)]exp[-ig(x)]. (31) 

3.3. The solutions Of Ua(X ) and Va(X) 

In this section, a glossary of notations is listed. The 
details are explained in the previous papers, P1 and P2. 

b = Do/otc, [P2.2.19] (32) 

p + q = - i [(e  - 0 0 )  2 - Mz]I/Z/otc, 

[P2.2.20a] (33a) 

p - q = - i[(e  + Do) 2 - M2]1/2/~c, 

[P2.2.20b] (336) 

a = - i ~ + q ,  b =  l + i F , + q ,  c ' =  l + q - p .  

[P1.4.12] (34a, b, c) 

The last three~f are the parameters to specify the standard 
hypergeometric function F(a, b; c'; z). (See, for example, 
Bateman-Eredelyi, 1953; Abramowitz & Stegun, 1964.) 

In order to specify the position, we often use the 
variable ~ instead of x. It is defined by 

- tanh~x (or > 0). [P1.3.6a] (35) 

With the use of these notations, the wavefields ua(x) and 
va(x) can be written as follows: 

ua(x) 
= G ( ~ ) F [ - i E , + q ,  1 + i ~ + q ; a  + p + q ; ( l + ~ ) / 2 ] ,  , 

[P1.4.13b] (36a) 

Va(X) 

- -CaG(~)F[ i f '+q ,  1 -  i ~ + q ;  1 + p  + q ;  (1 + ~)/2], 

[P1.4.16] (36b) 
where 

G(~) = ( c o s h o d x )  -q  e x p ( p a x ) ,  [P1.4.21a] (37) 

C a = (Xg/X_g)I/2M -1 {-(e  - Do) 

+ [(e - Do) 2 - M211/2}. [P2.2.23b] (38) 

Here, Ca is the amplitude ratio for a perfect crystal 
corresponding to the region of x -- - c ~  in the present 
model of distortion. 

Using the results (36a) and (36b), we obtain the ratio 
(Va/Ua) in the form 

Cd(~) ~ Va/U a 

F[iE,+q, 1 - izS+q; 1 +p-k-q;  (1 + ~)/2] 
= C a F [ - i E ' + q ,  1 + i ~ + q ;  1 + p  + q ;  (1 + ~)/2]" 

(39) 

3.4. The standing wave and the rocking curve 

Now, one can write the external SW in parallel with the 
expression (7a) in the case of perfect crystals. A 
modification, however, is required not only to replace 
Eg/E o by Cex [equation (29)] but also to express Cex in 
terms of the calculable amplitude ratio 

G(~) = IGI exp(iS). (40) 

Here, from (39), the phase angle is given by 

8(~) = ½(~g - ~)  + 80 + 81(~) - 82(~) , (41a) 

where 

30 = arg{-(e - Do) + [(e - Do) 2 - M2] 1/2} (41b) 
_ _ _  

t To avoid confusion with c = tan 0n, c' is used for c in the standard 
textbooks. 
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and 31 and 3 2 are the phase angles of  the hypergeometric 
functions in the numerator and the denominator, 
respectively. Notice that 3o is independent of  ~(x) but 
depends on the off-Bragg angle A0. On the other hand, 81 
and 3 2 depend on the two variables. 

Obviously, ICex] = ICd(~e)l. Although ~ is defined as 
the reflection vector of  the undistorted crystal, the 
geometrical relation 

2rt'~ = I(g - I(  o = 2rrG + AKg - AK o 

does hold also in the case of  distorted crystals. Therefore, 
(30) can be rewritten as 

= 2rr{(G. re) - (~. re)}. (42) 

According to these preliminary arguments, one can 
write the external SW in the form 

Iex(r) = IE/Eol 2 

= 1 + ]Cd(~e)l 2 + 2lfd(~e)l 

× cos{2rr[G. (r - re) ] + 3(~:e) - ~O(Xe) 

+ 27r(~. re) }, (43) 

in which ~e is the value of  ~ on the crystal surface. 
Similarly, remembering that dg/d  o = I fdl exp[i(3 - ~0)] 

from (31), (39) and (40) and IEol = lu~(Xe)l from (28a), 
one can obtain the expression for the internal SW in the 
form 

I~.(r) -Id/Eol 2 

= {1 + Ifd(~)l 2 + 21Ca(~)l 
× cos[2rr(~, r) + 3(x) - ~0(x)]} 

× lUa(X)/Ua(Xe)l 2. (44) 

Again, one can see that Iex = Iin on the crystal surface, 
r - -  re. 

The rocking curve (reflectivity) can be given straight- 
forwardly by 

R = Ied(~e)l 2. (45) 

As for the case of perfect crystals, Ifd(~e)l in (43) can be 
replaced by R 1/2. 

3.5. The rocking curve fo r  f luorescence (RCF) 

First, the fluorescence due to the external SW is 
discussed. In general, the fluorescence yield is given by 

Yex = f Pf(r)Iex(r) dr, (46a) 

where pf(r) is a distribution function for the scattering 
body. Here, for simplicity, it is assumed that all adsorbed 
atoms are located at equivalent positions r,, with respect 
to the crystal surface and pf of a single atom has the form 
of Cra3(r - ra), where tr,, is the cross section of 
fluorescence scattering. The elaboration of this model 

may not be difficult but is out of the scope of the present 
paper. Thus, (46a) can be simplified as 

Yex(A0) = NacraIex(ra), (46b) 

where Na is the number of scattering atoms and Iex is 
given by (43). [Equation (7a) may be used for perfect 
crystals.] Through ]Call, G and the phases, Yex is a 
function of  A0. t  It is called the rocking curve for 
fluorescence (RCF) in this paper. Notice that, if  one takes 
a lattice net plane for the crystal surface, the term 
27r(~ • re) - ~O(Xe) can be dropped in the expression of/e,, 
by virtue of  (25). 

Next, we shall consider a RCF of impurities due to the 
internal SW. Here, all impurities in the host crystal must 
be taken into account. However, it is assumed that all 
impurities have a fixed relation to the deformed net plane. 
Under these circumstances, conveniently, r; can be 
written as ~ + ~m, where ~m is the position vector for 
the mth net plane, and ~ is the relative vector from this 
net plane. Then, the RCF of impurity atoms is given by 

Yin(A0) = Niai Y~ I~n(~ + rm)Af(r~i + rm), (47) 
m 

where the suffix i is used for the impurity atom and Ni is 
the number of impurities associated with one net plane. 
Here, they are assumed to be independent of the index m. 
In some problems, the impurity distribution in the host 
crystal may be important. Then, the factor Ni must be put 
inside the summation the same as Nm. One needs the 
factor A j; which accounts for the attenuation of  the 
fluorescence X-rays coming out of  the crystal. However, 
the details of this subject are not discussed here (see 
~4.3). 

The functional form of Ii~ is given by (44) 
(ri -- 1~/+ ~,,). Again, by virtue of  (25), one can rewrite 
2zr(~. rm) as ~0(Xm)" In order to emphasize that we are 
concerned with the impurities associated with the mth net 
plane, tentatively, the coordinate x is denoted by Xi, m. 
However, the difference between X~,m and Xm is less than 
the local lattice spacing and the functions ~0, 3 and ua are 
practically unchanged within this distance. Therefore, to 
a good approximation, the argument Xi, m can be replaced 
by Xm and the two ~0 terms cancel each other. Thus, it 
turns out that/in has the following form: 

Ii~(l~ + rm) --" {1 + [Cd(~m)l z 

+ 21Cd(~m)l COS[2Zr(~" 1"~/) + 3(Xm)]} 

× [Ua(~Cm)/Ua(Xe)l 2, (48) 

t From equations (2), (5), (9a) and (9b), one obtains the relation 
2zrG = 2n'~ + AKo- AKg. With the additional use of (10a), (10b), 
(1 la) and (1 lb), this leads to the relation between IGI and Igl; i.e. 

IGI = (1 + AO/tanOg)l~l. 

In most cases, however, the difference between G and ~ can be 
neglected. 
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where gm is the value of ~ on the ruth net plane and ~. rT' / 
is a constant in our model. With the same argument, 
Af(ff i  + rm) can be written as Af(f~m). 

For obtaining the yield numerically, (47) is incon- 
venient because the total number of net planes is 
enormous. Then, the summation is to be replaced by an 
integration with respect to x, set equal to Xm" Since the 
number of net planes in dx is Ig(x)[ dx, we shall have 

x e 

Y,.(exo) = N~cr i f I~ (~  + ~m)Af(x)lg[ dx. (49) 
- - O O  

4. Numerical examples 

4.1. Preliminaries 

We shall show some examples of RC, the phase of SW 
and RCE For convenience, the following normalized 
parameters defined in paper P2 will be used. In the 
following, A = c/IMI is a kind of extinction distance. 

X = x /A :  the coordinate normal to the crystal surface 

(50a) 

A =/xcA: a parameter indicating absorption (50b) 

H = lMI/~c = Aa /A:  

the half thickness of deformed area (50c) 

T/IMI: the off-Bragg angle referred to the crystal 

at X = 0 (50d) 

Consequently, ( T - D o ) / I M I  is the off-Bragg angle 
referred to the perfect crystal in the region of X = 
-oo ,  which will often be called the 'bottom crystal'. 

As discussed in P2, various rocking curves are 
expected depending on Xe, A and H. In the following, 
however, the range of parameters is confined such that 
the RC is similar to that of perfect crystals, because we 
are interested in such cases for most SW methods. Also, 
for simplicity, the parameters are fixed as X e = O, 
Do/IM] = 3 and r c = 0 in (14) unless otherwise stated. 
In addition, the constant phases, • and q~g, are omitted. 
The physical implications will be discussed in §5. 

4.2. RCF due to external S W  

4.2.1. Non-absorbing crystals (.4 = 0). In order to 
explain the underlying principles, first we shall consider 
this characteristic case. As discussed in P2, even if the 
crystal is distorted near the crystal surface, the RC has a 
region of total reflection corresponding to the bottom 
crystal. Fig. 2(a) is a set of RCs calculated by (45) and 
(39) for H -  0.002 (i), 0.02 (ii) and 0.2 (iii). The first two 
are indistinguishable from Darwin's top-hat curve with 
the center at Do/IM I = 3, but case (iii) is slightly 
different from it in the tails of the RC. We shall regard 
case (i) as a perfect crystal. Incidentally, if (8) and (18) 
are used, the same RC is obtained except that the centre is 
shifted to T/IMI = O. 

Fig. 2(b) shows the phase 8 of Ca [equation (41a)] for 
the above three cases. We notice that the phase is very 
sensitive to the lattice distortion. Fig. 2(c) illustrates 
RCFs in the respective cases calculated by (46b), 
omitting the constant factor adVa. Here, it is assumed 
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Fig. 2. The case of non-absorbing crystals (A = 0). (a), (b) and (c) are- 
the reflectivity (R), the phase (~) and the fluorescence yield (Y) due to 
the external SW, respectively. The parameters H used for the curves 
(i), (ii) and (iii) are 0.002, 0.02 and 0.2, respectively, and L, = 
G • (ra - re) = 0.5 is used for (c). The absolute symbol IMI in the 
abscissa is suppressed, for convenience. The same convention is used 
in the following figures. 
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that L a ---- G .  (r a - r e )  of (43) is 0.5; i.e. the adsorbed 
atoms are located normally at the half spacing of the 
external SW from the crystal surface. Notice that the 
central part of  (iii) is significantly different from that of  
the perfect crystal (i). 

4.2.2. Absorbing crystals (A -- 0.1). The general 
behaviour is not very different from the case of  non- 
absorbing crystals, except that the RC has a round shape 
(Darwin-Prins curve). As shown in Fig. 3(a), we notice 
that RCs of  distorted crystals are practically the same as 
the perfect crystal (P) unless H is larger than 0.1. There, 
the curve for H -- 0.1 is denoted by  D. Again, since the 
phase 8 is very sensitive to the distortion (physically 
speaking, the thickness of the distorted area), the RCFs 
corresponding to D and P are very different for the same 
value of La. 

However, one can obtain nearly the same RCFs by 
adjusting the parameter La for perfect or distorted 
crystals. Fig. 3(b) is an example where the curve D' is 
obtained with (La, H) = (0.50, 0.1) whereas the curve U 
is the case of  (0.58, 0.002). This example demonstrates 
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Fig. 3. The case of absorbing crystals (A = 0.1). (a) and (b) are the 
reflectivity and the fluorescence yield due to the external SW, 
respectively. The parameters for curves P (perfect crystal) and D 
(distorted crystal) in (a) are H = 0.002 and 0.1, respectively. The 
parameters for P' and D' in (b) are (La, H) = (0.58, 0.002) and 
(0.50, 0.1), respectively. Notice that practically P = D and P' = D'. 

that if the crystal is distorted the conventional assumption 
of a perfect crystal leads to 16% error for the location of  
adsorbed atoms. 

4.3. RCF due to internal S W  

In this section, we shall discuss first SW and then RCE 
The expression for SW [equation (48)] is a product of  the 
interference factor { . . .  } and the intensity factor I . . .  I z. 
Since they are functions of the two variables T/IMI and 
X, we explain them using contour diagrams. The 
parameters are fixed as X e = O ,  A = 0 . 1  and 
L i = (fg. ~ )  = 0.50 throughout. The set of drawings in 
Fig. 4 shows the case of  perfect crystals. The top and 
bottom curves illustrate the profiles of  each contour 
diagram at X = 0 and -3 .0 ,  respectively. Obviously, the 
interference factor (a) is independent of  the variable X 
because 81 ~-- 8 2 ~-- 0 in perfect crystals and the intensity 
profile is the same as the RCF due to the external SW 
given by (43) with La = 0.5. The intensity factor (b) 
indicates an attenuation of the intensity. The rapid 
attenuation in the central region (2 < T/IMI < 4) is 
due to well known extinction effects. Accordingly, the 
product (c), i.e. the SW profile, depends significantly on 
the depth of the crystal. 

Fig. 5 shows similar diagrams for a deformed crystal 
(H = 0.2). The intensity profile at X = 0 in (a) is the 
same as the RCF due to the external SW in distorted 
crystals but the profile below X ~ - 0 . 5  is nearly the 
same as that of  the perfect crystal (Fig. 4a). The intensity 
factor (b) is essentially the same as that of the perfect 
crystal. As a result, the product (e) is similar to that of  the 
perfect crystal except in the surface area above X ~ -0 .5 .  
However, detailed inspection shows that the intensity 
factor (b) is asymmetric with respect to T/IMI = 3. 
Accordingly, the SW profile is larger than the profile of 
the perfect crystal near T/[M[ ~ 4. 

Next, we shall discuss the RCF of the impurities, 
which can be calculated by (49). The expression for Af(x) 
depends on the experimental conditions to collect the 
fluorescence X-rays. Here, for simplicity, it is assumed 
that it is proportional to e x p { - B ( X  e - X ) } ,  where 
B = I z f A / c o s O  B and /zf is the linear absorption 
coefficient of  the fluorescence X-rays. Notice that B 
must be larger than A because the energy of  the 
fluorescence is smaller than that of the incident X-rays. 

The series in Fig. 6 shows a comparison of RCFs for 
the perfect crystal (H -- 0.002) and the distorted crystal 
(H = 0.2). Figs. 6(a), (b) and (c) correspond to the cases 
of  B = 0.3, 3 and 10, respectively. Without detailed 
calculations, one can anticipate easily that, for smaller B, 
the RCFs for the perfect and distorted crystals are nearly 
the same because the main contribution comes from the 
bottom crystal. Only for larger B is the difference 
appreciable. The difference near T/IMi ~, 4 in every case 
is due to the asymmetry of  the intensity factor (b) 
mentioned above. 
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Fig. 4. The case of  an absorbing perfect crystal (A = 0 .1 , / - /~  0.002). The contour diagrams (a), (b) and (c) represent the interference factor, the 
intensity factor and the internal SW, respectively [see equation (48)]. Li = (~. ~ )  = 0.5 is used for (a) and (c). The top curves are the profiles at 
X = 0 and the bottom ones are the profiles at X = -3 .0 .  
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Fig. 5. Diagrams similar to Fig. 4 for an absorbing distorted crystal (A = 0.1, H = 0.2). Lt = O.5 is used for (a) and (c). 
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All calculations were carried out by Mathematica 
Version 2 designed for PCs. In the present program, the 
graphical representations were directly connected with 
the basic formulae so that one could grasp easily their 
physical implications. Also, any intermediate stage of 
calculations could be checked. Fig. 2(b) to Fig. 2(c) is an 
example. The contour diagrams (a) and (b) help in 
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Fig. 6. RCFs due to the internal SW for various absorption coefficients 

of the fluorescence X-rays: B = 0.3 (a), 3.0 (b) and 10 (c). The 
continuous curves show the perfect crystal (H = 0.002) and the 
squares illustrate the case of the distorted crystal (H = 0.2). 
Throughout, A = 0.1 and L; = 0.5 are used. 

understanding diagram (c) in Figs. 4 and 5. The 
computation time was less than 20 s for most 2D curves 
and about 20 min for the contour diagrams. 

5. D i s c u s s i o n  a n d  c o n c l u s i o n s  

5.1. Remarks on the present theory 

The basic diffraction theory is described in P1 and P2. 
From it, the analytical expressions of the RC (45) and the 
RCFs due to the external and the internal SWs [(46b) and 
(49), respectively] are derived for distorted crystals. The 
phase angles of Eg/Eo and dg/do are exactly formulated 
because they are crucial to the positions of the SWs. 
Using these results, one can determine the positions of  
foreign atoms referred to the deformed net plane of  the 
host crystal. 

5.1.1. The absolute position of  the antinode (or node). 
In the present theory, we are concerned with the location 
referred to the ruth net plane rather than the absolute 
position in space. By using the same arguments to derive 
(48) from (44), the antinode position ( ~ )  is given by 

27/'(g. r~nz) -- 27/'X~nz/¢~ "-- --8(Xm) (51) 

to a good approximation. The first two terms of(41a)  for 
8 represent the phase in the case of the perfect bottom 
crystal and 8x - 82 is the deviation from it. Fig. 7 shows 
some examples of  the deviation for various depths of  the 
net plane (--Jm)" In general, it is large on the crystal 
surface and near the Bragg peak and it tends to zero with 
increasing ]Xm[ and [A0[. 

If we need the absolute position in space, it is easily 
obtained by adding the coordinate Xm of the mth net plane 
which is calculable by the use of the transcendental 
equation (25). Accordingly, the spacing of  the internal 
SW is also a function of the off-Bragg angle and the 
depth. 

5.1.2. The lattice distortion. The local reflection vector 
g(x) is schematically illustrated in Fig. 1. By changing 
the parameters, or, Do and Xe, one can construct a model 
distortion, which changes monotonously under the 
constraint that g(x) has no tangential component. The 
surface fabrications in semiconductor devices may cause 
distortions of this type. In this paper, only the case of  
weak distortions was discussed. However, the present 
theory can be applied to the case of large distortions, for 
which the RC may have two peaks or oscillatory 
characters (Authier et al., 1989; Kato, 1992b). 

It must be noted here that we are concerned with only 
long-range distortions, which are averaged ones in a 
sense. When the displacement u(r) changes rapidly over 
an atomic scale as in dislocation cores and impurity 
clusters, and there are plenty of  these defects, the present 
theoretical basis is doubtful. In such cases, we must start  
with a statistical theory of dynamical diffraction (cf the 

review article of Kato, 1996) for obtaining the SW 
(intensity field) which creates the fluorescence X-rays. 
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5.1.3. The phase angles intrinsic to the crystal. In the 
numerical calculation (~),  ~ and ~g were dropped for 
simplicity. However, these phases are important in the 
practice of SW methods. As shown in (43) and (44), the 
constant phase 21(~g - O )  in the phase 3 given by (41a) 
shifts the location of the internal and the external SW. 

- The  phase ~g comes from the factor Xg/X-g in the 
amplitude ratios, equations (18) and (38). This factor is 
omitted in many articles but is required for polar crystals. 
The phase ~ relates not only to the location of SW but 
also to the asymmetric profile of the RC. Because the 
lattice distortion also gives rise to the asymmetry as 
illustrated in Fig. 2(a), one must distinguish the two 
physical origins of the asymmetry. In other words, 
cannot be used as a fitting parameter for describing the 
RC tmless the crystal is assumed to be perfect. 

5.2. Remarks on S W  methods 

First, we consider the extemal SW method. An 
important conclusion of the present work is to point 
out that the RCF is very sensitive to the lattice distortion• 

- "if it extends over a tenth of A. The numerical examples 
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Fig. 7. The deviation of the phase angle ~ from the perfect crystal. 
Absorption is assumed to be A = 0.1. The figures associated with 
arrow lines indicate I~,,I/A, ~m being the net-plane position defined 
by equation (25). The bottom thick line corresponds to the bottom 
perfect crystal. (a) H = 0.2, (b) H = 0.4. 

of Fig. 3 illustrate that, even in the case of a weak 
distortion that is hardly detected by the RC, the best 
fitting value of La for the RCF is not unique, depending 
on the lattice distortion. This result is rather serious for 
the extemal SW method when it is applied to determin- 
ing the position ra of adsorbed atoms. 

' Next, we shall consider the internal SW method. When 
the absorption of the fluorescence X-rays is small, the 
RCF is nearly the same as that expected for the bottom 
crystal. Fig. 6(a) shows an example. Therefore, the 
surface distortion may not be serious for obtaining ~ .  
However, it is worth mentioning that the details of the 
RCF are different from the ideally perfect crystal near the 
high-angle edge of the Bragg peak. 

When the fluorescence absorption is very large, the 
main contribution to the RCF comes from the surface 
area. In this case, the remark made about ra in the 
external SW method is equally applicable to ~ ,  and the 
RCF is nearly the same as that expected in the external 
SW method. Fig. 6(c) shows a typical case. 

In conclusion, the following procedures will be 
suggested for the accurate determination of foreign 
atoms by means of the SW methods. First of all, it is 
very desirable to measure the RC and the RCF accurately. 
If they show a small discrepancy between the observed 
and theoretical curves on the assumption of a perfect 
crystal, it is worth extending the crystal model to 
distorted crystals as has beefi done in this work. If the 
fitting is improved, one must abandon the conventional 
assumption. 

• Furthermore, to avoid an accidental coincidence 
between theory and experiments, it is suggested the 
experiments be performed for a few higher-order 
reflections as in the work of Hertel et aL (1985) or the 
experiments be carried out with different wavelengths. In 
the analysis, the parameters intrinsic to the host crystal 
should not be used as fitting parameters. 
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